مطالب آموزشی 30

آموزشگاه کامپیوتر

:: ویندوز :: شبکه :: سخت افزار :: نرم افزار آفیس :: امنیت :: عمومی

آموزشگاه موبایل

:: آموزش اندروید :: معرفی موبایل

دانش آموزان 25

دوره آموزش ابتدایی

:: پایه اول :: پایه دوم :: پایه سوم :: پایه چهارم :: پایه پنجم :: پایه ششم

دوره اول آموزش متوسطه

:: پایه هفتم :: پایه هشتم :: پایه نهم

دوره دوم آموزش متوسطه

:: پایه دهم :: پایه یازدهم :: پیش دانشگاهی :: قنی حرفه ای :: کاردانش

علوم پایه

:: ریاضی :: فیزیک :: شیمی :: زیست شناسی

فنی مهندسی 67

:: مهندسی الکترونیک :: مهندسی عمران :: مهندسی برق :: مهندسی کامپیوتر :: مهندسی شیمی :: مهندسی صنایع :: مهندسی معدن :: مهندسی مکانیک :: مهندسی دریا :: مهندسی تاسیسات :: مهندسی کشاورزی :: مهندسی نفت :: مهندسی معماری :: مهندسی طبیعی و محیط زیست :: مهندسی صنایع غذایی

علوم انسانی 67

:: مدیریت :: ادبیات :: حسابداری :: حقوق :: فلسفه :: دسته بندی نشده

پزشکی

:: بیماری‌ها و اختلالات و درمان :: رشته‌های پزشکی و پیراپزشکی :: تجهیزات پزشکی :: تجهیزات پزشکی :: کمک‌های اولیه :: کالبدشناسی انسان

پیوند ها

:: راهنمای خرید :: شماره حساب ها :: شرايط و قوانين :: پرسشهای متداول
تماس با ما
تبلیغات
تعرفه ها
:: بازدید امروز : 47 بار
:: بازدید دیروز : 1622 بار
:: بازدید کل : 6095738 بار
:: مطالب ارسال شده : 91 پست
:: فایل های ارسال شده : 472 پست
:: بروز رسانی : 4 اسفند 1395
:: نسخه سایت: Beta 0.10
سم شناسی

شبكه گسترده سم شناسي

پروژه اطلاعاتي ماده ضد آفت از ادارات گسترش تعاوني دانشگاه كرنل؛ دانشگاه ايالتي ميشيگان؛ دانشگاه لياست ارگان؛ و دانشگاه كاليفرنيا در سوييس. مخارج و حمايت اصلي توسط برنامه ارزيابي برفودرا آفت كش كشاورز ملي خدمات گسترده USDA فراهم شده بود.

  • ماده ضد آفت
  • اطلاعات
  • نقشه مقطعي
  • نام هاي تجاري يا ساير اسامي

برلانير(بي . تي انواع كرستاكي):دايپل؛ تري سايد؛ باكتو اسپين؛ ليتاكس؛ نووابك؛ ويكتوري. سرتان (بي . تي . انواع ايزاوا) تكنار(بي . تي . انواع اسرائيلي).

  • وضع تنظيم

اين حشره كش ميكروبي ابتدا در سال ۱۹۶۱ بعنوان حشره كش براي استعمال عمومي ثبت شد. ثبت استاندارد كه در سال ۱۹۸۶توسط مركز حمايت از محيط زيست آمريكا (EPA) صادر شد. سازندگان را ملزم به ايجاد تغييرات جزئي در برچسب احتياط و ارائه اطلاعات بيشتري در رابطه با اثرات بي . تي بر ارگانيسم هاي غير مورد هدف؛ كرد. در حاليكه EPA؛ اساس اطلاعات سم شناسي براي بي . تي كامل فرض مي كند؛ اما اين مركز هنوز به اطلاعات بيشتري در مورد اثرات اكولوژي آن؛ نياز دارد.

  • مقدمه

باسيل ترينجنسيس (B.t.) باكتري ايجاد شده بطور طبيعي خاك است كه سمي توليد مي كند كه باعث بيماري در حشرات مي شود. تعداد حشره كش ها براساس اين سمهاست. B.t براي اداره ي آفت بدليل ويژگيش در برابر آفتها و نيز به دليل عدم سميتش براي انسانها دشمنان طبيعي بسياري از آفتهاي غلات؛ ايده آل به نظر مي رسد. انواع مختلفي از B.t وجود دارد كه هريك داراي سميت خاصي در برابر انواع خاص حشرات مي باشد: بي . تي . ايزاوا (B.t.a.) عليه شفيره هاي بيد موم در شانه عسل استفاده مي شود؛ بي . تي . اسرائيلي (B.t.i) در مقابل مگسها؛ مگسهاي سياه و بعضي پشه ها موثر است؛ بي . تي كرستاكي(B.t.k.) انواع مختلف حشرات فلس بال از جمله بيد كولي و كلم پيچ را كنترل مي كند. نژاد جديدي بنام بي . تي . سان دايگو يافت شده است كه براي گونه هاي خاص سوسك و شپشه پنبه مفيد مي باشد. بي. تي . براي اينكه موثر واقع شوند؛ بايد حشرات در زمان نا بالغي آنرا بخورند؛ تغذيه مرحله تكامل به شفيره ها برمي گردد. اين ماده در برابر حشرات بال بي اثر است. براساس جمعيت حشرات مورد هدف پيش از كاربرد اين ماده اطمينان مي دهد كه حشرات در مرحله شفيره اي آسيب پذيرند. بيش از ۱۵۰ حشره كه اكثرا شفيره حشرات فلس بال؛ شناخته شده اند كه به بعضي راههاي B.t. حساسند.

باكتريها؛ ارگانيسم هاي تك سلولي ابتدايي هستند كه به گروه ارگانيسم هايي بنام پيش هسته تعلق دارند. پيش هسته ها نه گياهند نه جانورند. مانند اعضاي خاص سلسله گياهي؛ مثل سرخسها و قارچها؛ بي . تي . سلولهاي زايش غير جنسي توليد مي كند بنام هاگها؛ كه آنها قادر به زنده ماندن در شرايط زيان آور مي كند. طي فرايند تشكيل هاگ؛ بي.تي نيز پيكر بلوري واحدي بعنوان محصول همراه توليد مي كند. هاگها و بلورهاي بي. تي بايد بيش از اينكه بتوانند بصورت سم در حشرات مورد هدف عمل كنند خورده شوند. بنابراين بي . تي به سم شكم اشاره مي شود. بلورهاي بي . تي در پاسخ به شرايط روده اي شفيره اي حشرات حساس؛ حل مي شوند. اين سلولها را در روده از بين مي برد كه مانع گوارش معمولي مي شود و تلاش مي كند حشرات را از تغذيه در گياهان ميزبان باز دارد. هاگهاي بي.تي مي توانند ساير بافت حشرات را مورد هجوم قرار دهند كه اينكار را با تكثير در خون حشره صورت مي گيرد تا حشره بميرد و مرگ مي تواند ظرف چند ساعت تا چند هفته از استفاده بي.تي صورت گيرد كه به گونه حشره ميزبان بي .تي خورده شده بستگي دارد.

  • اثرات سم شناسي
  • سميت حاد

هيچ شكايتي پس از خوردن هجده انسان از يك گرم بي . تي تجاري بطور روزانه طي پنج روز بصورت يك روز در ميان صورت نگرفت. عده اي ۱۰۰ ميلي گرم از پودر آنرا روزانه بعلاوه اندازه رژيم غذايي استنشاق كردند. افراديكه يك گرم از آنرا در سه روز متوالي خورده بودند مسموم نشده بودند.

چون اين عملي كه از اولين عوامل كنترل بيولوژيكي ثبت شده براي استفاده عليه حشرات در آمريكا بود؛ بي.تي نياز به انجام برنامه آزمايشي داشت كه دقيق تر از آنچه كه EPA بطور شايع براي آفت كشي نياز داشت؛بود. در نتيجه؛ هيچ گفتگوي اطلاعاتي در رابطه با اطلاعات سميتي خواسته شده توسط EPA براي اهداف ثبت وجود ندارد.

ميزان وسيعي از تحقيقات با آزمايش روي حيوانات با استفاده از چندين روش در معرض قرار گيري به اين صورت است( بالاترين مقدار آزمايش شده ۱۰*۷/۶ براي يازدهمين هاك در هر حيوان بود). نتايج اين آزمايشات نشان مي دهد كه استفاده از محصولات بي .تي مي تواند باعث لفزايش اثرات منفي كمي شود. بي . تي در ساير آزمايشهاي صورت گرفته روي پرندگان؛ سگها؛ خوكهاي شاخ دار؛ موشها؛ موش خرماها؛ انسانها يا ساير حيوانات سميت حاد نداشت. زمانيكه به موش خرماها بي . تي . كا (B.T.K)

تزريق شد؛ هيچ سم يا ويروس شايد آن اثرات ديده نشد. هيچ سميت گوارشي در موش خرماها؛ موش ها يا بلدرچين ژاپني كه بلورهاي پروتئين از بي .تي اسرائيلي خورده بودند؛ پيدا نشد.

تركيب بسيار كمي در آزمايش حيوانات از استنشاق و مواجهه با پوست مشاهده شد. اين ممكن است با خصوصيات فيزيكي بيشتر از بيولوژيكي بي.تي آزمايش شده ايجاد شود. موشها يك يا چند دوره يك ساعته از تنفس غباريكه حاوي ۱۰*۵/۶ تا از همين هاگ بي.تي در هر متر مكعب بود؛ زنده ماندند. هيچ اثر سمي در موش خرماها كه فرمولبندي بي.تي با قراردادن بطور مستقيم داخل ريه هايشان در ميزان g/kg 500 از وزن بدن؛ داشتند؛ مشاهده نشد.

ميزان حشره كش فرمولبندي شد؛ حشره كش كه ۵۰% موش خرماها را تقريبا مي ……………….

تاریخ: 1395/12/4 بازديد: 467 ادامه
گاز طبیعی

 مقدمه

اساسا نم زدایی گلایکول شامل استفاده از حلال گلایکول معمولا دی اتیل گلایکول (DEG) یا تری اتیل گلایکول (TEG) می باشد که در یک تماس دهنده با جریان گاز مرطوب تماس پیدا می کند. حلال گلایکول آب را از گاز مرطوب جذب می کند. وقتی جذب شد، ذرات گلایکول سنگین تر می شوند و در انتهای تماس دهنده جمع می شوند جایی که آن ها به بیرون از نم زدا برده می شوند. گازطبیعی که بدین شکل بیشتر ترکیبات آب خود را از دست می دهد، به بیرون از نم زدا انتقال می یاید. حلال گلایکول به همراه تمام آبی که از گازطبیعی جذب کرده است از میان یک دیگ بخار تخصص یافته که به منظور بخار کردن آب باقیمانده طراحی شده است، عبور می کند. وقتی آب موجود در این دیگ بخار به حرارت ۲۱۲درجه فارنهایت می رسد بخار می شود، در حالی که گلایکول تا ۴۰۰ درجه فارنهایت بخار نمی شود. این تفاوت درجه جوش جدا کردن آب از محلول گلایکول را آسان می سازد و امکان استفاده دوباره از آن در فرایند نم زدایی را فراهم می کند.نوآوری جدید در این فرایند، اضافه کردن خازن های جدا کننده فلاش تانک است.

ترکيبات گاز طبيعي خام

۱ – گاز طبيعي خام که از چاههاي مستقل گازي استخراج ميگردد و هنوز فرايندهاي سرچاهي و پالايشي را طي نکرده است عمدتا از هيدروكربور متان بعلاوه گاز اتان و همراه با هيدروكربورهاي ديگر( سنگين و مايع) مانند پروپان – بوتان – و هيدروكربورهاي سنگين تر يا چكيده نفتي (CONDENSATE) بعلاوه بنزين طبيعي ( NATURALGASOLINE) و همچنين مقداري از ناخالصي هاي غير هيدروکربوري شامل بخار آب (H2O), كربن دي اكسيد(CO2) , كربن منواكسيد (CO), نيتروژن (N), هيدروژن سولفيد (H2S), هليوم (HE) كه درصد هر كدام بستگي به نوع مخازن دارد تشكيل شده است .

اين چاهها اصولا قادر به توليد در اندازه هاي تجاري بوده و محصول آنها با نام گاز غير همراه ( NON -ASSOCIATED GAS) نيز شناخته ميگردند گازهاي استخراجي از چاههاي مستقل گازي يا نفت همراه ندارند و يا مقدارنفت همراه آن بسيار ناچيز ميباشد.

گاز طبيعي خام استخراجي از چاههاي مستقل گازي با خود مقداري شن – ماسه و آب شور بهمراه دارد که قبل از ارسال به تاسيسات پالايشي در مجموعه تاسيسات سر چاهي و توسط ساينده ها از گاز جدا ميگردند.

دستگاههاي گرمکن موجود در نقاط مشخصي درطول خط لوله تا مرکز جمع آوري نيز مانع از انجماد بخار آّب موجود در گاز ميگردند زيرا در صورت نبود اين تجهيزات ترکيبات جامد و نيمه جامد هيدرات هاي گاز طبيعي احتمالي(کريستالهاي يخ) در روند کار سيستم گردآوري ايجاد مشکلات عديده مينمايند.

۲ – گاز طبيعي خام از چاههاي نفت نيز بدو صورت استخراج ميگردد.

الف – در صورتي که گاز، محلول در نفت خام باشد گاز محلول (SOLUTION GAS ) نام دارد.

ب – در تماس مستقيم ولي جدا از نفت باشد گاز همراه (ASSOCIATED GAS) ناميده مي شود .

 مشخصات و مزيتهاي گاز طبيعي

گاز طبيعي(متان – CH4) حاصل از عمليات فرآورش نهايي دارا ي مشخصات بدون رنگ – بدون بو و سبکتر از هوا ميباشد. ارزش حرارتي يك گاز، مقدار حرارتي است كه در اثر سوختـن يك مترمكعب آن گاز ايـجاد مي شود که بدين ترتيب ارزش حرارتي هر متر مکعب متان تقريبا معادل ارزش حرارتي يک ليتر نفت سفيد ميباشد و به عبارت ديگر چنانچه يک فوت مکعب از آن سوزانده شود معادل با ۲۵۲ کيلو کالري انرژي حرارتي آزاد مينمايد که از اين لحاظ در مقايسه با ديگر سوختها بسيار قابل توجه ميباشد . هيدروکربنها با فرمول عمومي CnH2n+2 اجزاء اصلي گاز طبيعي بوده و منابع عمده انرژي ميباشند . افزايش اتمهاي کربن مولکول هيدروكربن را سنگينتر و ارزش حرارتي آن افزونتر ميسازد. ارزش حرارتي هيدروکربنهاي متان و اتان از ۸۴۰۰ تا ۱۰۲۰۰ كيلو كالري بازاي هر مترمكعب آنها مي باشد .

ارزش حرارتي هيدروکربن پروپان برابر با ۲۲۲۰۰ كيلو كالري بازاي هر مترمكعب آن مي باشد . ارزش حرارتي هيدروکربن بوتان برابر با ۲۸۵۰۰ كيلو كالري بازاي هر مترمكعب آن مي‌ باشد . گاز طبيعي شامل ۸۵ درصد گاز متان و ۱۲ درصد گاز اتان و ۳ درصد گاز پروپان، بوتان، ازت و غيـره مي باشد

گاز طبيعي حاصل از ميادين گازي سرخس حاوي متان بادرجه خلوص ۹۸ درصد ميباشد. ارجحيت ديگر گاز گاز طبيعي(متان – CH4) به ساير سوخت ها آن است که گاز طبيعي تميز ترين سوخت فسيلي است زيرا نه تنها با سوختن آن گاز سمي و خطرناك منواكسيد كربن توليد نميگردد بلکه جالب است بدانيم که ماحصل سوخت اين گاز غالبا آب بهمراه حداقل ميزان دي‌اكسيدكربن در مقايسه با تمام سوختهاي فسيلي ميباشد .

در يک تحقيق از ميزان آلايندگي گاز طبيعي و ديگر سوخت هاي فسيلي يافته ها به شرح ذيل بودند . ميزان انتشار co2 در گاز طبيعي ۶/۵۳ درصد، پروپان ۶۷ درصد، بنزين ۷/۷۲ درصد، نفت گاز ۷۶/۲ درصد، نفت کوره ۳/۷۹ درصد و زغال سنگ ۱/۸۲ درصد به ازاي يک واحد گرما(Kg co2/Gj) است لذا با توجه به موارد فوق مي توان از آن به عنوان سوخت برتر – ايمن و سالم در محيطهاي خانگي- تجاري و اداري که داراي فضاهاي بسته و محدود ميباشند استفاده نمود.

دماي احتراق خود به خود گاز طبيعي ۶۴۹ درجه سانتي گراد است. دماي جوش متان ۴۹/ ۱۶۱ درجه سانتي گراد زير صفر است .فرايند تبديل گاز طبيعي به گاز مايع LN G در همين درجه حرارت صورت ميگيرد.

يکي از عوامل مهم و مؤثر در کامل سوزي گاز طبيعي و آبي سوزي شعله تامين هواي کافي است. ميزان هواي لازم جهت هر مترمكعب گاز طبيعي هنگام سوختن حدودأ ۱۰ مترمكعب ميباشد. آبي تر بودن شعله بمعني دريافت بهتر و بيشتر هوا مي باشد.

فرآورش گازطبيعي

مجموعه عمليات پيچيده اي است شامل فرايندهايي بقرار و ترتيب ذيل که در جريان آن بتوان گاز طبيعي را که شامل عمدتا متان بعنوان اصليترين ماده و با درصد خلوص ۸۰ تا ۹۷ ميباشد را بعنوان محصول نهائي پالايش نمود, صمن آنکه در اين فرايندها علاوه بر استحصال گوگرد ترکيبات ارزشمند مايعات گازطبيعي (NATURAL GAS LIQUIds –NGL)شامل گاز مايع LPG)) و (CONDENSATE) که تمامآ در رديف اقلام صادراتي نيزبشمار ميايند جداسازي ميگردند.

تفکيک گاز و نفت

گاز همراه با نفت

گازي که همراه نفت است الزاما بايد از آن جدا شود تا نفت خالص و پايدار بدست آيد. در صورتي که نفت و گاز استخراجي از چاه مستقيما به مخازن ذخيره نفت هدايت گردند.بعلت سبک و فرار بودن گاز مقداري از آن از منافذ فوقاني مخزن ذخيره خارج شده و در ضمن مقداري از اجزاي سبک و گرانبهاي نفت را هم با خود خارج مي‌کند. از اين رو نفت را پس از خروج از چاه و پيش از آنکه به مخزن روانه گردد به درون دستگاه تفکيک نفت و گاز هدايت مي‌کنيم.

عمليات تفکيک گاز همراه از نفت خام اصولا با ابزار موجود در سر چاه و طي فرايندهاي سرچاهي ، انجام مي شود .اين عمل توسط دستگاهي بنام جداکننده سنتي که هيدرو کربورهاي سنگين و مايع را از هيدروکربورهاي سبکتر و گازي تفکيک مينمايد صورت ميگيرد. سپس اين دو هيدروكربن براي فرآورش بيشتر به مسيرهاي مجزايي هدايت شده تا عمليات تصفيه اي لازم برروي آنها صورت گيرد.

اين دستگاه به شکل يک استوانه قائم دربسته بوده که در آن با استفاده از نيروي گرانش ذرات گاز از هم باز و به اصطلاح منبسط مي‌گردد، و در اين ضمن از سرعت آن نيز کاسته مي‌شود. وقتي فشار و سرعت گاز به مقدار زيادي کاهش يافت بخش انبوهي از گاز ، از نفت جدا مي‌گردد. آنگاه گاز حاصل را توسط لوله بمخزن ديگري هدايت مي‌کنند گازي که از دستگاه جدا کننده خارج مي‌گردد، غالبا از نوع گاز تر بوده و حاوي مقدار زيادي بنزين سبک(طبيعي) نيز ميباشد. بنزين سبک (طبيعي) به لحاظ آنکه دارا ي ارزش فراواني ميباشد الزاما بايد در مراحل بعدي از گاز طبيعي جدا گردد .

گاز محلول در نفت خام

در مواردي که گاز در نفت خام محلول است مقداري از آن به جهت ماهيت گاز و تحت تاثير کاهش فشار موجود در سر چاه از نفت جدا ميگردد و سپس اين دو گروه از هيدروكربنها براي فرآورش بيشتر هر يک به مجاري مخصوص بخود فرستاده مي شوند.

۱ تفکيک مايعات گازي

اين فرايند اولين مرحله از مجموعه عمليات پالايش گاز طبيعي خام ميباشد . در به عمل آوري مايعات گازطبيعي فرايندي سه مرحله اي وجود دارد. زيرا ابتدا مايعات (NGL) توسط جاذب NGL از گازطبيعي استخراج و سپس ماده جاذب طي فرايند دوم قابليت استفاده مجدد (مکرر) را در فرايند ابتدايي کسب مينمايد و نهايتا در فرايند سوم عناصر تشکيل دهنده و گرانبهاي اين مايعات نيز بايد از خودشان جدا سازي شده و به اجزاي پايه اي تبديل گردند . که اين فرايند در يك نيروگاه فرآورش نسبتا متمركز بنام کارخانه گاز مايع بر روي مايعات حاصل انجام مي شود. بخش اعظم مايعات گازي درمحدوده بنزين و نفت سفيد مي باشد . ضمن آنکه ميتوان فرآورده هاي ديگري مانند حلال و سوخت جت و ديزل نيز از آن توليد نمود. مواد متشكله در مايعات گازطبيعي………………………………

تاریخ: 1395/11/30 بازديد: 724 ادامه
گاز

گاز

دیدکلی

این گازها از مخلوط شدن گازهای گوناگون مانند CO2 ، He ، H2S ، N2 با هیدروکربنها تشکیل می‌شوند. هیدروکربنها معمولا ازنوع متان و دیگر پارافین‌های ردیف پایین هستند. فشار و دما ، ترکیبات گاز در فازهای مختلف را معین می‌سازد. درنتیجه کاهش فشار ، اکثر هیدروکربنهای ردیف بالا تغییرحالت می‌دهند، یعنی گازهای مرطوب درست می‌شوند. درصورتی که تمام گازهای خشک تقریبا از متان درست می‌شوند.گازهای مرطوب شامل متان و مقدار قابل توجهی از آلکان‌ها با تعداد کربن بالا هستند.

هیدروکربنهای گازی متعلق به سری نفتهای پارافینی

گازهای خشک (Dry Gases)

این گازها حاوی مقدارزیادی متان می‌باشند (۶۴ الی ۹۶ درصد) و این گازها به سختی تبدیل به مایع می‌شوند. در کان‌سارهای زغال سنگ و مناطق مردابی نیز گازهای خشک بوفور یافت می‌شوند که قسمت عمده آنها از متان بوجود آمده است. گاز متان در حرارت و فشار موجود در منابع زیرزمینی قابل تراکم نیست. بنابراین همیشه بصورت گاز در کان‌سارها وجود دارد و فقط در نتیجه فشارهای زیاد می‌تواند در نفت حل شود.

گازهای مرطوب (Wet Gases)

این گازها تقریبا به سهولت می‌توانند به مایع تبدیل شوند و دارای مقدار زیادی از پارافین‌های ردیف بالا مانند اتان ، پروپان ، هگزان و هپتان می‌باشند. این گازها را می‌توان تحت فشار و حرارت زیاد به مایع تبدیل کرد. لذا نسبت به شرایطی که در کانسار حاکم است، این گازها به شکل فاز مایع یا فاز بخار در آنجا وجود دارند.

لایه‌های مخازن نفت و گاز  

گازهای طبیعی در کانسارهای نفت

بنابر آنچه گذشت، گازهای طبیعی ممکن است همراه با نفت و یا به صورت مجزا تشکیل کانسار دهند که هر دو نوع آن ، از نظر اقتصادی خیلی با ارزش می‌باشد. در کانسارهای نفت ، امکان دارد که گازهای طبیعی به حالتهای مختلف دیده شوند. غالبا این گازها قسمت فوقانی منابع را اشغال کرده ، چون وزن مخصوص کمتری دارند، در نتیجه یا بر روی نفت و یا بر روی آب قرار دارند. ولی بعضی اوقات در کانسارهای نفت حاوی گاز ، درصد قابل ملاحظه‌ای از گازها به صورت محلول قرار می‌گیرد که نسبت آن وابسته به اختصاصات فیزیکی نفت و گاز و همچنین حرارت و فشار منبع یا مخزن است.

گاهی ممکن است دریک مخزن ، درصد قابل ملاحظه‌ای از گازهای طبیعی محلول در آب باشند. در اعماق بیش از دو هزار متری نیز ، تحت شرایط فشار و حرارت زیاد ، گازهای مخلوط در نفت از نظر فیزیکی غیر قابل تشخیص می‌باشند.

گازهای ترش و شیرین

گازهایی که دارای CO2 و گوگرد هستند، به نام گازهای ترش و گازهای دارای گوگرد کمتر را گازهای شیرین گویند.

کانسارهای گازهای طبیعی

گازهای طبیعی زیرزمینی یا به تنهایی و یا به همراه نفت تشکیل کانسار می‌دهند. درصورت همراه بودن با نفت گازها در داخل نفت حل می‌شوند و درصورت رسیدن به درجه اشباع ، تجزیه شده ، در قسمت‌های بالای افق‌های نفتی به شکل گنبدهای گازی قرار می‌گیرند.

مهار گازهای طبیعی

اگرچه هنگام استخراج نفت ، سعی می‌شود برای نگهداری انرژی کانسار از استخراج آن جلوگیری شود، باز این گاز حل شده در نفت در هنگام استخراج به همراه آن خارج می‌شوند. درسالهای گذشته این گازها را آتش می‌زدند. ولی امروزه از آنها به عنوان مواد خام شیمیایی و ماده سوختنی با ارزش استفاده می‌کنند.

ترکیب گازهای طبیعی

دربعضی جاها ، گازهای زیرزمینی دارای نیتروژن بیشتر (کانزاس) یا CO2 بیشتر (مجارستان ، کلرادو) درخود هستند. بخشی از CO2 ، از محصولات تشکیلات نفتی و بخشی نیز با منشاء آتشفشانی بوجود می‌آید. مقدار جزئی هیدروژن نیز در اکثر مواقع پیدا شده است. گازهای ازت‌دار می‌توانند تا ۲.۵ درصد حجمی هلیوم داشته باشند (مانند ایالات متحده امریکا). از شکسته شدن عناصر رادیواکتیو درون سنگهای ساحلی هلیوم بوجود می‌آید. گازهای دارای سنگ مخزن کربناته ، دارای مقدار زیادی H2S هستند.

رسیدن گازهای طبیعی به سطح زمین

بیرون آمدن گازهای طبیعی زیرزمینی به سطح زمین ، همانند بروز نفت به سطح زمین ، از پدیده‌های مهم بوده ، توسط میزان بیرون آمدن گازطبیعی می‌توان در مورد پتانسیل کانسارهای هیدروکربنی ، اطلاعات با ارزش و مهمی بدست آورد. ولی تشخیص و تفکیک این گازها خیلی ساده نیست تا بدانیم آیا این گاز مربوط به گاز مردابی یا گاز زغال سنگ و یا گاز مربوط به نفت است. از وجود هیدروکربنهای ردیف بالا ، می‌توان گفت که این گاز از نوع زیرزمینی است.

گازهای موجود در کانسارهای زغال سنگ

این نوع گازها تا ۶ درصد حاوی هیدروکربنهای ردیف بالا هستند. گازهایی که منشاء آنها مربوط به زغال سنگ است، خیلی کمیاب هستند (مانند گازهای موجود در کانسارهای زغال سنگ هلند) و علت آن را چنین توجیه می‌کنند که این نوع گازهای حاصل در مرحله زغال شدگی برای خودشان سنگ مخزن خوبی پیدا نمی‌کنند تا جمع شوند.

تفکیک گازهای طبیعی ازنفت

گازی که همراه نفت است، باید از آن جدا شود تا نفت خالص بدست آید. اگر نفت و گازی که باهم از چاه خارج می‌گردند، پیش از آنکه از هم جدا شوند، مستقیما به مخازن نفت هدایت گردند، گاز چون سبک و فرار است، مقداری از آن ، از منافذ فوقانی مخزن به هوا می‌رود و در ضمن ، مقداری از اجزای سبک و گرانبهای نفت را هم با خود خارج می‌کند. از این رو ، نفت را پس از خروج از چاه و پیش از آنکه به مخزن بفرستیم، به درون دستگاه تفکیک که نفت و گاز را از هم جدا می‌سازد، هدایت می‌کنیم.

دستگاه تفکیک نفت و گاز

این دستگاه به شکل یک استوانه قائم است که در آن ، ذرات گاز از هم باز و به اصطلاح منبسط می‌گردد و در این ضمن ، از سرعت آن نیز کاسته می‌شود. وقتی فشار و سرعت گاز ، خیلی کم شد، مقدار زیادی از آن ، از نفت جدا می‌گردد. آنگاه آن را توسط لوله به درون ظرفی هدایت کرده ، از آن استفاده می‌کنند.

گازهای طبیعی تفکیک شده

گازی که از دستگاه جدا کننده خارج می‌گردد، غالبا از نوع گاز تر است و مقدار زیادی بنزین سبک همراه دارد. این بنزین طبیعی ، بسیار مفید و قیمتی است. از این رو ، نباید آن را به هدر داد. در اوایل پیدایش صنعت نفت ، از این ماده گرانبها استفاده‌ای به عمل نمی‌آمد و آن را همراه با سایر اجزای گاز به هدر می‌دادند. اما رفته رفته که به اهمیت و فواید این گاز پی بردند، سعی شد که بنزین طبیعی آن را استخراج نموده ، از بقیه اجزای آن نیز به انواع گوناگون استفاده شود.

تاریخ: بازديد: 452 ادامه
انواع چدن

انواع چدن

چدن (cast iron) ، آلیاژی از آهن- کربن و سیلیسیم است که همواره محتوی عناصری در حد جزئی (کمتر از ۰.۱ درصد) و غالبا عناصر آلیاژی (بیشتر از ۰.۱ درصد) بوده و به حالت ریختگی یا پس از عملیات حرارتی به کار برده می‌شود. عناصر آلیاژی برای بهبود کیفیت چدن برای مصارف ویژه به آن افزوده می‌شود. آلیاژهای چدن در کارهای مهندسی که در آنها چدن معمولی ناپایدار است به کار می‌روند. اساسا خواص مکانیکی چدن به زمینه ساختاری آن بستگی دارد و مهمترین زمینه ساختار چدن‌ها عبارتند از: فریتی ، پرلیتی ، بینیتی و آستینتی. انتخاب نوع چدن و ترکیب آن براساس خواص و کاربردهای ویژه مربوطه تعیین می‌شود.

 

طبفه ‌بندی چدن‌ها

چدن ها به دو گروه اصلی طبقه‌بندی می‌شوند، آلیاژهایی برای مقاصد عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدنهای سفید و آلیاژی که برای مقاومت در برابر سایش ، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار می‌گیرند.

 

چدن های معمولی (عمومی)

این چدن ها چزو بزرگترین گروه آلیاژهای ریختگی بوده و براساس شکل گرافیت به انواع زیر تقسیم می‌شوند:

  • چدن های خاکستری ورقه ای یا لایه ای: چدن های خاکستری جزو مهمترین چدن های مهندسی هستند که کاربردی زیاد دارند نام این چدن ها از خصوصیات رنگ خاکستری سطح مقطع شکست آن و شکل گرافیت مشتق می‌شود.خواص چدن های خاکستری به اندازه ، مقدار و نحوه توزیع گرافیت‌ها و ساختار زمینه بستگی دارد. خود این‌ها نیز به کربن و سیلیسیم (C.E.V=%C+%⅓Si+%⅓P) و همچنین روی مقادیر جزئی عناصر ، افزودنی‌های آلیاژی ، متغیرهای فرایندی مانند، روش ذوب ، عمل جوانه زنی و سرعت خنک شدن بستگی پیدا می‌کنند. اما به طور کلی این چدن ها ضریب هدایت گرمایی بالایی داشته، مدول الاستیستیه و قابلیت تحمل شوکهای حرارتی کمی دارند و قطعات تولیدی از این چدن ها به سهولت ماشینکاری و سطح تمام شده ماشینکاری آنها نیز مقاوم در برابر سایش از نوع لغزشی است. این خواص آنها را برای ریختگی هایی که در معرض تنش‌های حرارتی محلی با تکرار تنشها هستند، مناسب می‌سازد. افزایش میزان فریت در ساختار باعث استحکام مکانیکی خواهد شد. این نوع حساس بودن به مقاطع نازک و کلفت در قطعات چدنی بدنه موتورها مشاهده می شود دیواره نازک و لاغر سیلندر دارای زمینه‌ای فریتی و قسمت ضخیم نشیمنگاه یا تاقان‌ها زمینه‌ای با پرلیت زیاد را پیدا می‌کند. همچنین در ساخت ماشین آلات عمومی ، کمپرسورهای سبک و سنگین ، قالب‌ها ، میل لنگ‌ها ، شیر فلکه‌هاو اتصالات لوله‌ها و غیره از چدنهای خاکستری استفاده می‌شود.

 

  • چدن های مالیبل یا چکش خوار: چدن های چکش خوار با دیگر چدن ها به واسطه ریخته گری آنها نخست به صورت چدن سفید فرق می‌کنند. ساختار آنها مرکب از کاربیدهای شبه پایدار در یک زمینه‌ای پرلیتی است بازپخت در دمای بالا که توسط عملیات حرارتی مناسب دنبال می‌شود باعث تولید ساختاری نهایی از توده متراکم خوشه‌های گرافیت در زمینه فریتی یا پرلیتی بسته به ترکیب شیمیایی و عملیات حرارتی می‌شود. ترکیب به کار برده شده براساس نیازهای اقتصادی ، نحوه باز پخت خوب و امکان جذب و امکان تولید ریخته‌گری انتخاب می‌شود. مثلا بالا رفتن Si بازپخت را جلو انداخته و موجب عملیات حرارتی خوب و سریعی با سیلکی کوتاه می‌شود و در ضمن مقاومت مکانیکی را نیز اصلاح می‌نماید. تاثیر عناصر به مقدار بسیار کم در این چدن ها دست آورد دیگری در این زمینه هستند. Te و Bi تشکیل چدن سفید در حالت انجماد را ترقی داده، B و Al موجب اصلاح قابلیت بازپخت و توام با افزایش تعداد خوشه‌های گرافیت می‌شود میزان Mn موجود و نسبت Mn/S برای آسان کردن عمل بازپخت می‌بایستی کنترل گردد. عناصری از جمله Cu و Ni و Mo را ممکن است برای بدست آوردن مقاومت بالاتر یا افزایش مقاومت به سایش و خوردگی به چدن افزود. دلیل اساسی برای انتخاب چدن های چکش خوار قیمت تمام شده پایین و ماشینکاری راحت و ساده آنهاست. کاربردهای آنها در قطعات اتومبیل قطعات کشاورزی ، اتصالات لوله ها ، اتصالات الکتریکی و قطعات مورد استفاده در صنایع معدنی است.

 

  • چدن های گرافیت کروی یا نشکن: این چدن در سال ۱۹۴۸ در فیلادلفیای آمریکا در کنگره جامعه ریخته گران معرفی شد. توسعه سریع آن در طی دهه ۱۹۵۰ آغاز و مصرف آن در طی سال های ۱۹۶۰ روبه افزایش نهاده و تولید آن با وجود افت در تولید چدن ها پایین نیامده است. شاخصی از ترکیب شیمیایی این چدن به صورت کربن ۳.۷% ، سیلیسیم ۲.۵% ، منگنز۰.۳% ، گوگرد ۰.۰۱% ، فسفر ۰.۰۱% و منیزیم ۰.۰۴% است. وجود منیزیم این چدن را از چدن خاکستری متمایز می‌سازد. برای تولید چدن گرافیت کروی از منیزیم و سریم استفاده می‌شود که از نظر اقتصادی منیزیم مناسب و قابل قبول است. جهت اصلاح و بازیابی بهتر منیزیم برخی از اضافه شونده‌هایی از عناصر دیگر با آن آلیاژ می‌شوند و این باعث کاهش مصرف منیزیم و تعدیل کننده آن است. منیزیم ، اکسیژن و گوگرد زدا است. نتیجتا منیزیم وقتی خواهد توانست شکل گرافیتها را به سمت کروی شدن هدایت کند که میزان اکسیژن و گوگرد کم باشند. اکسیژن‌زداهایی مثل کربن و سیلیسیم موجود در چدن مایع این اطمینان را می‌دهند که باعث کاهش اکسیژن شوند ولی فرآیند گوگردزدایی اغلب برای پایین آوردن مقدار گوگرد لازم است. از کاربردهای این چدن ها در خودروسازی و صنایع وابسته به آن مثلا در تولید مفصل‌های فرمان و دیسک ترمزها ، در قطعات تحت فشار در درجه حرارت های بالا مثل شیر فلکه‌ها و اتصالات برای طرحهای بخار و شیمیایی غلتکهای خشک‌کن نورد کاغذ ، در تجهیزات الکتریکی کشتی‌ها ، بدنه موتور ، پمپ‌ها و غیره است.

 

  • چدن های گرافیت فشرده یا کرمی شکل: این چدن شبیه خاکستری است با این تفاوت که شکل گرافیت‌ها به صورت کروی کاذب ، گرافیت تکه‌ای با درجه بالا و از نظر جنس در ردیف نیمه نشکن قرار دارد. می‌توان گفت یک نوع چدنی با گرافیت کروی است که کره‌های گرافیت کامل نشده‌اند یا یک نوع چدن گرافیت لایه‌ای است که نوک گرافیت گرد شده و به صورت کرمی شکل درآمده‌اند. ایت چدن ها اخیرا از نظر تجارتی جای خود را در محدوده خواص مکانیکی بین چدن های نشکن و خاکستری باز کرده است.

ترکیب آلیاژ موجود تجارتی که برای تولید چدن گرافیت فشرده استفاده می‌شود عبارت است از: Mg%4-5 ،Ti%8.5-10.5 ، Ca% 4-5.5 ، Al%1-1.5 ، Ce %0.2-0.5 ،Si%48-52 و بقیه Fe. چدن گرافیت فشرده در مقایسه با چدن خاکستری از مقاومت به کشش ، صلبیت و انعطاف‌پذیری ، عمر خستگی ، مقاومت به ضربه و خواص مقاومت در دمای بالا و برتری بازمینه‌ای یکسان برخوردار است و از نظر قابلیت ماشینکاری ، هدایت حرارتی نسبت به چدن های کروی بهتر هستند. از نظر مقاومت به شکاف و ترک خوردگی برتر از سایر چدن ها است. در هر حال ترکیبی از خواص مکانیکی و فیزیکی مناسب ، این چدن ها را به عنوان انتخاب ایده آلی جهت موارد استعمال گوناگون مطرح می‌سازد. مقاومت بالا در مقابل ترک‌خوردگی آنها را برای قالبهای شمش‌ریزی مناسب می‌سازد. نشان دادن خصوصیاتی مطلوب در دماهای بالا در این چدن ها باعث کاربرد آنها برای قطعاتی از جمله سر سیلندرها ، منیفلدهای دود ، دیسکهای ترمز ، دیسکها و رینگهای پیستون شده است.

 

چدن های سفید و آلیاژی مخصوص

کربن چدن سفید به صورت بلور سمانتیت (کربید آهن ، Fe3C) می‌باشد که از سرد کردن سریع مذاب حاصل می‌شود و این چدن ها به آلیاژهای عاری از گرافیت و گرافیت‌دار تقسیم می‌شوند و به صورتهای مقاوم به خوردگی ، دمای بالا، سایش و فرسایش می‌باشند.

چدن های بدون گرافیت: شامل سه نوع زیر می باشد:

  • چدن سفید پرلیتی: ساختار این چدنها از کاربیدهای یکنواخت برجسته و توپر M3C در یک زمینه پرلیتی تشکیل شده است. این چدنها مقاوم در برابر سایش هستند و هنوز هم کاربرد داشته ولی بی‌نهایت شکننده هستند لذا توسط آلیاژهای پرطاقت دیگری از چدن های سفید آلیاژی جایگزین گشته‌اند.
  • چدن سفید مارتنزیتی (نیکل- سخت): نخستین چدن های آلیاژی که توسعه یافتند آلیاژهای نیکل- سخت بودند. این آلیاژها به طور نسبی قیمت تمام شده کمتری داشته و ذوب آنها در کوره کوپل تهیه شده و چدن های سفید مارتنزیتی دارای نیکل هستند. Ni به عنوان افزایش قابلیت سختی پذیری برای اطمینان از استحاله آستنیتی به مارتنزیتی در طی مرحله عملیات حرارتی به آن افزوده می‌شود. این جدن ها حاوی Cr نیز به دلیل افزایش سختی کاربید یوتکتیک هستند. این چدنها دارای یک ساختار یوتکتیکی تقریبا نیمه منظمی با کاربیدهای یکنواخت برجسته و یکپاره M3C هستند که بیشترین فاز را در یوتکتیک دارند و این چدنها مقاوم در برابر سایش هستند.
  • چدن سفید پرکرم: چدن های سفید با Cr زیاد ترکیبی از خصوصیات مقاومت در برابر خوردگی ، حرارت و سایش را دارا هستند این چدنها مقاومت عالی به رشد و اکسیداسیون در دمای بالا داشته و از نظر قیمت نیز از فولادهای ضد زنگ ارزان تر بوده و درجاهایی که در معرض ضربه و یا بازهای اعمالی زیادی نیستند به کار برده می‌شوند.

این چدنها در سه طبقه زیر قرار می‌گیرند:

  1. چدنهای مارتنزیتی با Cr %12-28
  2. چدنهای فریتی با ۳۴-۳۰% Cr
  3. چدنهای آستنیتی با ۳۰-۱۵%Cr و ۱۵-۱۰% Niبرای پایداری زمینه آستنیتی در دمای پایین.

طبقه بندی این چدنها براساس دمای کار ، عمر کارکرد در تنش های اعمالی و عوامل اقتصادی است. کاربرد این چدنها در لوله‌های رکوپراتو ، میله ، سینی ، جعبه در کوره‌های زینتر و قطعات مختلف کوره‌ها، قالب‌های ساخت بطری شیشه و کاسه نمدهای فلکه‌ها است……….

 

تاریخ: 1395/11/24 بازديد: 628 ادامه
آمونیاک سازی به روش هابر

به طور کلی تعادل های شیمیایی و مسائل مربوطه، اصول و عوامل دخیل و موثر در برقراری و جا به جایی تعادل ها مورد بحث قرار گرفتند. حال در اینجا به عنوان آخرین مطلب از فصل تعادل شیمیایی قصد داریم شما را با کاربرد یک نمونه از واکنش های تعادلی در صنعت، یعنی ساخت ماده پرارزش آمونیاک آشنا کنیم. با ما همراه باشید.
دست یابی به آمونیاک:
طی سال های متمادی، تعدادی از شیمی دان ها تلاش کردند تا آمونیاک را از هیدروژن و نیتروژن تهیه کنند تا اینکه سرانجام در سال ۱۹۰۴ میلادی یک دانشمند آلمانی به نام فریتس هابر موفق شد به همراه همکارش لروسینول دستگاهی بسازد که در فشارهای ۱۵۰ تا ۲۵۰ اتمسفر و دمای ۵۵۰℃ و در حضور کاتالیزگر اورانیوم می توانست در « مقیاس آزمایشگاهی» آمونیاک تولید کند. به همین دلیل به افتخار این دانشمند به فرایند ساخت آمونیاک طبق واکنش زیر «فرایند هابر» می گویند.
پس از آنکه عملی بودن این روش در آزمایشگاه ثابت شد، کارل بوش دیگر دانشمند آلمانی، موفق به انجام این فرایند در « مقیاس صنعتی» شد و نهایتا نخستین کارخانه آمونیاک سازی، با این روش در سال ۱۹۱۳ در آلمان شروع به کار کرد.

کاربردهای آمونیاک:
از این ماده پرارزش در تهیه کود شیمیایی، مواد منفجره و بسیاری از مواد شیمیایی صنعتی – تجاری استفاده می شود.

تهیه مواد اولیه مورد نیاز در روش هابر:
نیتروژن مورد نیاز از تقطیر هوای مایع و گاز هیدروژن از طریق عبور بخار آب داغ از روی زغال داغ (C) به دست می آید.
یک روش دیگر برای تهیه گاز هیدروژن، پالایش نفت خام است.

شرایط حاکم بر روش هابر:
فشار:
اگر واکنش تعادلی تولید آمونیاک را در نظر داشته باشید متوجه خواهید شد برای افزایش تولید آمونیاک می توان فشار را زیاد کرد. زیرا با افزایش فشار، تعادل به سمتی جا به جا می شود که مجموع ضرایب استوکیومتری مواد گازی آن کمتر است. بنابراین در فشارهای بالا واکنش در جهت تولید NH3(g) پیش می رود. به همین دلیل تا آنجا که ممکن باشد فرایند هابر در فشارهای بالا انجام می شود. در صنعت روش هابر را در فشاری بین ۱۵۰ تا ۳۵۰ اتمسفر انجام می دهند.
دما:
همان طور که مشاهده می کنید فرایند هابر گرماده است، پس قاعدتا با کاهش دما طبق اصل لوشاتلیه می توان تعادل را به سمت تولید آمونیاک بیشتر جا به جا کرد. اما این روش از دیدگاه صنعتی و اقتصادی به ضرر تولید آمونیاک است زیرا کاهش دما، سرعت واکنش های رفت و برگشت را نیز کاهش داده و سرعت برقراری تعادل بسیار پایین می آید. در صنعت هدف این است که در مدت زمان کمتری آمونیاک مورد نظر بدست بیاید. بنابراین روش هابر در مقیاس صنعتی در دماهای بالا ( حدود ۵۵۰℃ ) انجام می شود.

کاتالیزگر:
در صنعت برای اینکه سرعت برقراری تعادل و در نتیجه سرعت تولید آمونیاک را باز هم بیشتر کنند واکنش مورد نظر را در مجاورت کاتالیزگر آهن (Fe) و اکسیدهای فلزی مانند MgO و Al2O3 انجام می دهند. در واقع کاتالیزگر کمک می کند تا در دماهای به نسبت پایین تر، آمونیاک سریع تر تشکیل شود و در نتیجه NH3(g) به مقدار بیشتر و ارزان تر تولید شود. اگر از کاتالیزگر استفاده نکنیم مجبوریم دما را تا حدود ۱۰۰۰℃ افزایش دهیم، دمای بالا باعث جا به جایی تعادل در مسیر برگشت و تجزیه مقداری از NH3 تولید شده می شود، هم چنین دمای بالا استهلاک دستگاه ها را زیاد کرده و عمر مفید آنها را کاهش می دهد. اما با استفاده از کاتالیزگر می توانیم در دمای پایین تر ( برای مثال حدود ۴۵۰℃ ) به سرعت مطلوب برسیم.

تاریخ: 1395/11/15 بازديد: 776 ادامه
تلاش ما در این وب سایت افزایش سطح آگاهی علمی و همچنین فراهم کردن منابع اطلاعاتی برای استفاده در تحقیقات و پروژه های دانش آموزی و دانشجویی می باشد، لذا سپاسگذار خواهیم بود اگر تا حد امکان از منابع سایت تنها در پیشینه تحقیق و مقاله خود استفاده نمائید.